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Abstract

A new time-domain method for the analysis of planar guided wave

propagation and scattering is developed in which an analytical process is incoporated

along one of the spatial dimensions. The method makes use of the Method of Lines

which has been applied to microwave problems in the time-harmonic cases.

The procedure and the formulation of the proposed method to calculate the

time history of a pulse scattered in a partially filled waveguide and a finned waveguide

are described in detail. The cutoff characteristics of the structures can be derived via

the Fourier transform of the time-domain pulse scattering data. The results are

compared with other available data.

The method is extended to characterize three-dimensional structures. The

procedure and the formulation of the three-dimensional analysis are explained. The

propagation and scattering data of a pulse in a planar transmission line with its

discontinuities can be obtained by using the three-dimensional analysis. From the

time-domain data, the frequency-domain characteristics for a wide range of

frequencies can be extracted by the Fourier transform. The important design

parameters such as the characteristic impedance and the propagation constant of a

uniform microstrip line and the scattering parameters of its discontinuities (step-in-

width, open-end and gap discontinuities) are presented and con.: r", - with available

published data.
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Chapter 1

Introduction

1.1. Background and Goals of This Dissertation

A discontinuity in a planar transmission line circuit is caused by an abrupt

change in the geometry of the strip conductor, as shown in Fig. 1.1. Therefore,

electric and magnetic field distributions are modified near this discontinuity. At low

frequencies, the discontinuity dimensions are much smaller than the wavelength. In

this case, the altered electric and magnetic field distribution can be approximated by

lumped element equivalent circuits. However, as the operating frequency increases,

accurate frequency-dependent scattering matrix representations associated with

discontinuities are necessary for a accurate design of a microwave and millimeter-

wave circuit. Especially, the present cut-and-try cycles in the Microwave Integrated

Circuit (MIC) / Monolithic Millimeter-Wave Integrated Circuit (MMIC) will be greatly

reduced if the accurate frequency-dependent characteristics of discontinuity can be

obtained.

In the early stages of the study of discontinuities, analyses were mostly done

by quasi-static methods [1-10). In all these methods, the followhig assumptions are

implied: (i) the size of the discontinuity is small compared with the wavelength so that

the phase variation across the discontinuity can be neglected, (ii) the current on the

strip has no divergence and (iii) the strip conductor is infinitely thin.
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Fig. 1.1 (a) The layout of a microwave amplifier using a gallium arsennide MESFET

device, showing discontinuities in the microstrip lines.

(i) (ii)

(iv) (v) (vi)

Fig. I. (b) Various microstrip discontinuities appearing in microwave integrated

circuits. (i) open-end, (ii) gap, (iii) step-in-width, (iv) T-junction,

(v) cross-junction and (vi) bend



Because of these assumptions, quasi-static analysis is valid only up to a few

gigahertz. Therefore, fullwave analysis is required to determine the frequency-

dependence of various parameters needed for a complete characterization of the

discontinuity. The first fullwave analysis was done by using a planar waveguide

model [ 11,121, where the frequency dependent scattering parameters can be obtained

by matching the field in each wavegtide at the discontinuity interface using the planar

waveguide model. The Spectral Domain Method / Transverse Resonance Technique

can also be used to obtain the frequency-dependent scattering parameters for various

discontinuities [13-16]. More recently, the moment method has been used by several

investigators to characterize discontinuities, where radiation and surface wave effects

can be included [17,18].

All of the above mentioned approaches have been performed in the frequency

domain; that is, the data for the whole frequency range are calculated one frequency at

a time. This is an expen;i.ve :nproach when the results over a wide frequency range

are sought. Since a pulse response contains all the information of a system for the

whole frequency range, it is natural to use a pulse to excite a planar circuit in a time-

domain approach. From the time-domain pulse response, the frequency-domain

characteristics of the structure can be extracted via the Fourier transform Therefore,

the time-domain analysis of microwave planar transmission structures provides an

alternative to time-harmonic approaches, and it is also useful for studying the

behavior of pulsed signal in such structures as high speed digital circuits. The

knowledge of time-domain propagation and scattering can be used for circuit

V diagnosis by means of a fast pulse.
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A typical time-domain analysis requires a discretization of the three-

dimensional space into the three-dimersional mesh, as shown in Fig. 1.2. Maxwell's

1/1/

1/2/2
12

1 -1/2

t =NAt t = (N+I)At
(a)

Ey AHzEx l

Ey EEz

Ey 
Hx 1

Ex

t=NAt t = (N+1/2)At

(b)

Fig. 1.2. Examples of the discretization scheme in (a) TLM method in two-dimensional

plane, and (b) FDTD in three-dimensional space.

equations can be discretized at these points, as in the case of Finite-Difference Time-

Domain method (FDTD) [19], or the wave phenomena can be modeled by networks,

as in the case of the Transmission Line Matrix (TLM) method [20] and the Bergeron's
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method [211 These techniques have been applied by several investigators t3

microwave planar transmission lines in order to study the time-domain pulse

propagation and scattering phenomena, and the frequency-domain data have been

derived from the time-domain information. In [22] and [23], Bergeron's method was

used to obtain the qualitative results that graphically illustrate the pulse propagation

and coupling in the microstrip-bend and the crossing. In [24], the TLM method was

used to obtain some characteristics of fin lines. In [253 and (26], the FDTD method

has been used to obtain the behavior of a pulsed signal along a uniform microstrip line

with various discontinuities, from which the frequency-dependent design information

for the uniform microstrip line and its discontinuities was extracted. Usually, large

amount of computer storage and long computation time are

(a) (b)

(c) (d)

Fig. 1.3. Several planar transmission lines used in MICs. (a) microstrip, (b) slotline,

(c) coplanar waveguide, and (d) coplanar strip.
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required for these aforementioned time-domain analyses. An additional problem of

these methods is the difficulty in handling open boundaries.

In this study, a new time-domain method is proposed, that originates from the

fact that most of the discontinuities in the planar transmission structure are loc ted on

the substrate surface, and the space above and below this surface is uniform and

homogeneous as shown in Fig. 1.3. One wants to make use of this structural feature

and wishes to solve ine problem by discretizing the structure in only the two-

dimensional surface on the substrate instead of using the conventional three-

dimensional discretization. This is possible if the wave scattering phenor,ena in the

direction normal to the substrate surface can be derived analytically By using an

analytical sohItion in one direction, the dimension of the problem is effectively

reduced by one so that computer storage and computation time may be saved. The

presem method actually incoporates this process and is essentially an extention of the

frequency-domain analysis called the Method of Lines.

The Method of Lines technique was developed by mathematicians in order to

solve partial differential equations[27]. The Method of Lines is simple in concept: for

a given system of partial differential equations, all but one of the independent

variables are discretized to obtain a system of o. dinary differential equations so that

the whole space is represented by a number of lines. This semi-analytical procc,,ire

is apparently very useful in the calculation of planar transmission structures. This is

because these structures consist of regions, which are homogeneous in one direction

as shown in Fg. 1.3. Moreover, this method has no problem with so called "relative

convergence" phenomenon sonietimes encountered in mode-matching and Galerkin's

method.
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The application of Method of Lines in microwave field iam!'-is was first

introduced in [28] for the calculation of the propagation constant and the characteristic

impedance of microstrip lines. The method has also been extended to three

dimensional problems such as the calculation of the resonant frequencies of an

arbitrarily shaped planar resonator [29]. There have also been several publications in

which the Method of Lines was modified for the analysis of a quasi-planar structure

or for better performance [30]. Those papers, however, have always used the

Method of Lines to solve time-harmonic Maxwell's equations.

This study describes a new time-domain method termed Time-Domain Method

of Lines (TDML). The goals of this dissertation are as follows.

(1) Development of the procedure and formulation of the new method.

(2) Verification of the method by solving several simple two-dimensional problems

and comparing the results with those obtained by other methods.

(3) Application of the new method to three-dimensional structures to obtain useful

design data.

1.2 Dissertation Organization

Following Chapter 1, Chapter 2 presents the basic discrete mathematics

related to the Method of Lines - boundary condition, discretization scheme, difference

operators and diagonalization matrix. In Chapter 3, the analysis of the two-

dimensional structure with a uniform interface boundary condition is formulated and

the behavior of an initial pulse inside the partially filled rectangular waveguide is

investigated using the present method. The cutoff frequency spectrum of the structure

is obtained via the Fourier transform of the time-domain data. In Chanter 4, the
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procedure developed in Chapter 3 is modified to deal with problems where the

metalization exists on th., ,ub~rate surface. In this situation, a non-uniform interface

boundary condition results. The procedure is used to ca-lculate the cutoff frequency

spectrum of a finned waveguide by the Fourier transform of the time-domain data. In

Chapter 5, the formulation of the Time-Domain Method of Lines for the

characterization of the wave propagation and scattering property in the three-

dimensional problems is described in detail. The results of the time-domain data and

the derived frequency-domain characteristics for the uniform microstrip line and its

discontinuities (step-in-width, open-end and gap discontinuities) are presented.

Chapter 6 summarizes the contributions of this study and Dtroposes some related

problems for future research.

ImM lmman m mm mm mn~~



Chapter 2

Preliminary

2.1. Outline of the Proposed Method

As pointed out in Chapter 1, the proposed method originates from the fact that

most of the discontinuites appearing in the planar transmission line structures are

located on the substrate surface, and the space below and above this surface is

uniform and homogeneous. One wants to use this structural feature and wishes to

solve the problem by discretizing the space only in the two-dimensional surface on the

substrate where the discontinuity is located. This is possible if the wave-scattering

information in the direction perpendicular to the substrate surface is available

analytically. The new method actually incorporates this process and entails

discretization of the structure by a number of lines perpendicular to substrate surface

as shown in Fig 2. 1. At a specified time, the field distribution at each intersection of

these lines with the substrate surface is calculated by Maxwell's equations discretized

only in the x and z directions parallel to the substrate surface. The field information in

the y direction is obtained analytically at each point and time. This information can be

fourd from the inverse spatial transform of the solution of the frequency-domain

Helmholtz equation in the y direction.

One may wonder as to what is happening to the wave scattering phenomena

that are taking place everywhere in the waveguide, not only on the substrate surface.

9
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z

Fig. 2.1. The discretization scheme of the method of lines. The three-dimensional

space is discretized by a collection of lines parallel to the y-axis.

This question is natural, because in other time-domain methods the electromagnetic

fields at one mesh point interact with those at all six neighboring mesh points in the x,

y, and z directions. In the proposed method, the fields at any point on one

discretization line do not appear to interact with those on a similar point on another

line. It should be emphasized that this is not the case. As will be seen in the

formulation, a spatial transformation is introduced by which the field as a function of

(discretized) x and z is transformed to another discretized quantity which contains the

field quantities at all x and z values. The analytical information in the y direction is

then applied to this transformed quantity. Since analytical expressions are used for

the field variation in the y direction, this method can easily handle the case where the

top wall is removed and the structure is open in the y direction.
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2.2. Discrete Mathematics Related to the Method of Lines

As explained above, the proposed method is a "semi-analytical method" for

solving the time-dependent Maxwell's equation in a planar waveguide structure so

that the discrete expressions as well as the analytical expressions need to be used in

the formulation. Therefore, it is important to become farmilar with some discrete

mathematics related to the method of lines before the formulation of the method is

explained. This mathematics will be used to derive all the formulations described in

later chapters.

2.2.1. Lateral Boundary Conditions and Discretization Scheme

Let 0 be a field component of interest. The boundary condition for 0 is

always given by either the Dirichlet or the Neumann condition because the circuit to

be considered in this study is always enclosed by perfect electric walls. Since all the

space variables (x and z) except one (y) are discretized in the Method of Lines, the

original continuous space is approximated by a number of lines parallel to the y-axis

located only at discretized positions in x-z plane, as shown in Fig. 2.1. The locations

of these discretized points are determined by the boundary condition of the field

component, 0. For example, if a boundary is known to be a Dirichlet-boundary to 0,

the position of the first discretization point for 0 is A away from the boundary where

A4 is the unit Jiscretization length in direction. On the other hand, if the boundary

is a Neumann-boundary, the first discretization position is A /2 away from the

boundary. Figure 2.2 shows the difference of the discretization scheme between the

Dirichlet-boundary and Neumann-boundary. One thing to be noticed here is that the

two set of the discretization points are shifted by A/2. This discretization scheme
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reduces the discretization error and makes the second-order difference operator

symmetric [28].

0 0

i1 ! 2 3 0 1 2 3

(a) image lines (b)

Fig. 2.2. Different discretization schemes corresponding to the boundary conditions.

(a) Dirichlet-boundary, (b) Neumann-boundary.

Figure 2.3 shows the outer boundary of two typical structures to be

considered in this dissertation. One is a rectangular waveguide for the two-

dimensional problem and the other is a rectangular waveguide resonator for the three-

dimensional problem. The waveguide walls consist of perfect electric walls so that

the lateral boundary condition for ) along any axis is always given by either the

Dirichlet or Neumann boundary condition. Since there always exist two boundaries

along one axis, there are four combinations of the lateral boundary condition in one

direction. Figure 2.4 shows the diagrams of these combinations and the appropriate

discretization positions for each case, in which the axis is assumed to be x.
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Y

(a) (b)

Fig. 2.3. The outer boundary of the structures considered in this study.

(a) rectangular waveguide, (b) rectangular waveguide resonator.

Y

- Ax

I op. ,, i
i 1 .... Nx Nx+1 i 0 1 .... Nx Nx+l

(a) (b)

i:0 1 .... Nx Nx+1 i0 1 .... Nx Nx+l
(c) (d)

Fig. 2.4. Four cases of lateral boundary condition combination.

(a) D-D, (b) N-N, (c) D-N, and (d) N-D.
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So far, only the one-dimensional (along the x-axis) discretization scheme has

been discussed. However, the two-dimensional discretization (in the x-z plane) is

required to solve the three-dimensional problem. In that case, both the x- and the z-

direction are discretized independently according to the discretization scheme

discribed above. A typical two-dimensional discretization example is shown in Fig.

2.5 where the N-D boundary condition is assumed along both the x-direction and the

z-direction.

1 2 .... ..... Nz
...................... ... ....................... z

1 0 0 0 0 0

0 0 0 0 0

Nz i0 0 0 0 0.. ""'.

D-boundary

X

Fig. 2.5. A two-dimensional discretization example where N-D boundary condition

is assumed along the x- and the z-axis.

2.2.2. Matrix Operators

In addition to the discretization of the space according to the boundary

condition of the field, the derivatives of the field with respect to the discretized

variable should be modified to a discrete form. In this section, the difference
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operators are introduced as a discrete form of a derivative, and the relation between

them will be derived.

2.2.2.1. First-Order Difference Operator

After the discretization of the space using the discretization scheme discribed

in Section 2.2.1, the original field defined in the continuous whole region can be

approximated by a collection of constituent field lines, 4i(y), defined only at the

discretized position i. In the cases of Fig. 2.4,

O(x,y) ---> [0l(y)]t = [01, 02, --- , ONt  (2.1)

where the i-th element represents the field of the i-th line.

Accordingly, the derivative with respect to the discretized variable, x, is

replaced by the difference operation of two consecutive lines using the central

difference scheme. That is,

DO(x,y) / Dx ---> do / ax 1i = [Oi- Oi-1] / Ax for i= 1 to N+I (2.2)

which can be represented in terms of the matrix.

-11 [4o

11 0

Ax ao(x,y_______) [ax

0

ON+1 (2.3)
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where [Dj] is a matrix that acts as a difference operator with respect to x.

boundary\ c ndition  Dirichlet Neumann

left boundwy 00 = 0 00 = 01

right boundary IN+I = 0 ON = ON+]

Table 2.1. Boundary conditions represented by the field values near the boundary.

The specific forms of the difference operator, which include the lateral

boundary conditions, can be derived by imposing the appropriate conditions (see

Table 2.1) on equation (2.3). The resulting first-order difference operators are

sAnIIuarized in Table 2.2. Although the operators shown in Table 2.2 are derived

from the derivative with respect to x, they can also be used for derivatives with

respect to the other variables. From table 2.2, it is easy to find the relationship

between the operators which will be used in the later formulation.

[DN ] = - [DDNi t  (2.4)

[DNN] = -[DDD~ t  (2.5)

where the superscripts ND,DN,NN,and DD represent the specific lateral boundary

conditions(left-right) associated with the difference operator, and the superscript t

represents the transpose of the matrix.

One thing to be noticed here is that the values of the derivative obtained from

the difference operation are defined only at the mid-point between two consecutive



17

points (i.e. the central difference). That is, the actual position of the i-th line of ao /

ax is at the center of the i- and (i+l)-th positions of 0 in the equation (2.2).

boundary
conditions [D] [d] elements of [d]

(left - right)

0] dii 2 sin[(i-0.5) it!N-D (2N+1)]

0 (i =., N)

"1 ~ - * % -

I ° 0 di,i = 2 sin[(i-0.5) it /
D-N 1 I (2N+1)]

D-*-o (i = 1 . ,N)

1 °0 C

di+l,i = 2 sin[i 7t /
(i. (2N+2)]

........ .1 .. ...... N)

-1l

N-N I " di-l,i = 2 sin[it /°°° ](2N+2)]

"Il (i = 2 ....... N)

Table 2.2. First-order difference matrices in the original and the transformed domain

for the various boundary conditions.
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Therefore, the boundary conditions of the field obtained by taking a difference

operation of a original field, (aO / ax), becomes dual condition of the boundary

condition of the original field, 0. That is, if the boundary condition of the original

field, 4, is Neumann-Dirichlet along the x direction, the boundary condition of its

derivative with respect to x becomes Dirichlet-Neumann along the x direction.

In the two-dimensional discretization of the three-dimensional problem, as

shown in Fig. 2.5, the field of the whole region is considered as a collection of Nx *

Nz constituent line fields which is represented by an Nx by Nz matrix as follows.

~1,1 1,Nz

O(x,y,z) --- > [,,j(y)] =

4, Nx.1 4, NxNz (2.6)

where the Oij represents the field of the (ij)-th line.

For the first-order derivative of 0 with respect to the x-direction, one obtains

o4,(x,y,z) 4 , i+1,f 4 , i~jaox " XjZ--X- X iAx
z: 7 -1/2),z Ax , i = 1 Nx  (2.7)

or, in matrix notation:
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1 ] 01,1 (1,Nz

Ax a---> =[Dx] [0j)

OPNx,l ONx,Nz (2.8)

The difference matrix [Dx] depends on the lateral boundary condition for (.

As shown above, it has the same form of operator matrix as used in the case of one-

dimensionsl discretization. Here, it forms the difference between two successive

rows of matrix [0ij].

Analogously, the difference operator for the first-order derivative of 0 with

respect to the z-direction should form the difference between two successive columns

of the matrix [(ir]. Thus, the difference matrix [Di], as taken from the Table 2.2 for

the N-D boundary condition with the size N = Nz , will operate on the transpose of the

matrix [Oij]-

ALz (2.9)

or > 10 ,j ID ! "
L Z,'(2.10)

The expression in equation (2.10) is compatible with the difference operators for the

x-direction. For example,

Ax ---> FDx ,'-J (2.11)



20

2.2.2.2. Second-Order Difference Operator

Using the central difference scheme, the second-order derivative with respect

to x is approximated by

a 2 0(x,y) a20 0i+1- 20i+ 0-1
0-2 x2 2

AX for i I to N (2.12)

which can be written in a matrix form,

I ' 00

1-21 0
23 2 0p(x,y) . . . ~ [ 1]

Ax Zx -- > [D xx j0i

0 1 -2 1 N

0N+1 (2.13)

where [Dxx] represents the second-order difference operator wth respect to x. The

second-order difference operators shown in Table 2.3 are obtained by imposing the

boundary conditions of the field, Table 2. 1, to equation (2.13).

The same results for the second-order difference operators can !,e easily

obtained by using the dual boundary condition property of the derivative operation

and equ-tions (2.4) and (2.5); that is,
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Ax2 D20 / Dx2

>[Dr] [D O l] = - [D']t [Drl] [Oi] = - [D] t [oi  -(2.14a)

> [Dx ] [Dr] [oil = - [D1]t [Dr] [oi] = - [Dx] [oil (2.14c)

>[D [D [0. = - [D1t [Dr] [o = - [D:] [oil (2.14d)

Although the results shown in Table 2.3 are derived from the derivative with respect

to x, they can be used for the derivatives with respective to the other variables.

2.2.3. Diagonalization Transformation Matrix

Since the second-order difference operators with respect to x, [Dxx], are real

symmetric matrices as shown in Table 2.3, they can be transformed into the diagonal

matrices by means of orthonormal transformation matries [Tx]:

[TxDDt [DxxDD] [TxDD] = diag [dxxDD] (2.15a)

[TxNN]t [DxxNN] [TxN N ] = diag [dxx NN ]  (2.15b)

[TxDN]t [DxxDN] [TxDNj = diag [dxxDN] (2.15c)

[TxND]t [DxxN D ] [TxNDI = diag [dxxND ]  (2.15d)

and

[TxDDit [TxDDI = [TxNNIt [TxNN] = [TXDN]t [TxDNI = [TxN]t [TxND] = INx

(2.16)
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boundary
conditions Dxx Tij
left-right

1 -1I
-1 2 -1I i 2 / (N+0.5) cos[(i-0.5) (j-0.5) 7 /[- (N+0.5)]

(i,j = I ....... N)
-1 2.

2 -1-1 2 -1__ _ _ _

N (N+0.5) sin[(i) (j-0.5) t /
D-N (N+0.5)]

1 2 - (i,j = 1 ....... N)

-2 -1

[2/ (N+I) sin[(i) j)t / (N+I)]

D-D (ij I N)

L -1 2-

-1 -1
- 1 2 - cos[(i-0.5) (j-1) 7 / N] ;j> I

N-N -2-2/N;j=1

-1 2 - - 1.(i, j = I . ...... N)

Table 2.3. Second-order difference matrices and elements of the transformation

matrices.

where INx represents the Nx by Nx unit matrix, and "diag" means a diagonal matrix.
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As indicated in equations (2.15a-d), the transformation matrices are different

depending on the boundary condition of the second-order difference operator. The

formula for the calculation of the elements of the transformation matrices are

summarized in Table 2.3 (see Apendix 1 for the derivation).

Similarly, the first-order difference operators can be (quasi-)diagonalized by

using the same transformation matrices (see Appendix 2 for the derivation)

[T t[DDD [Tx] = [diag[dxx]
diag d X I(2. 17a)

T.] [D ][Tx] = 0 diag [dx]] (2.17b)
-Wt

IT.l [D71 [TJ' = diag [d 1 (2.17c)

[Tn]I [DND] [TJND] = diag [dx] (2.17d)

Comparison of equations (2.17a-d) with equations (2.15a-d) shows that the

diagonalization of the first-order difference matrix requires the pre-multiplication of

the transpose of the transformation matrix for the dual boundary condition. The

forms of the diagonalized matrices and the formula for the calculation of the diagonal

elements are shown in Table 2.2.

The diagonal elements of the diagonalized second-order difference matrices

can be calculated using equations(2.14a-d) and (2.16). That is,

diag [dxxDD] = [TxDD]t [DXXDDI [TXDDI
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=- [TxDD]t [DxTD]t [TxN,][TxN'It [DxDD] [TxDD]

= - [dxDD]t [dxDD]  (2.18a)

diag [dxx NN] = [TxNN]t [DXXNN] [TxNNI

=- [xTNN]t [DxNN]t [TxDD][TxDD]t [DxNN] [TxNN1

= - [dxNN]t [dxNNI (2.18b)

diag [dxxDN] = [TxDN]t [DxxDN ] [TxDNI

=- [TxDN]t [DxDN]t [TxND][TxND]t [DxDN] [TxDN]

= - [dxDN]t [dxDNI (2.18c)

diag [dxxND ] = [TxND]t [Dxx ND ] [TxND ]

= - [Txt [DxND] t [TxDNI[TxDN]t [DxND] [TxN]

= - [dxND]t [dxNDI (2.18d)

2.3. Summary

In this chapter, the outline of the proposed method was described briefly and

the discrete mathetics related to the method of lines was explained. The proposed

method makes use of the structural feature of a planar circuit: that is, the spaces above

and below the substrate surface are uniform and homogeneous. As a result, the space

is discretized only in the two-dimensional substrate surface and an analytical solution

is used for the normal direction.

The descretization scheme used in the method of lines depends on the

boundary condition of the field of interest. This shifted descretization scheme reduces

the discretization error and makes the formulation symmetric. Also, the discrete
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forms of the first-order derivative and the second-order derivative were derived, in

which the side wall boundary conditions were incorporated. Finally, the

diagonalization of the first-order difference matrix and the second-order difference

matrix were explained by orthogonal transformation matrices.



Chapter 3

Time-Domain Method of Lines Applied to a Partially Filled

Waveguide

3.1. Introduction

Since this is the first time the Time-Domain Method of Lines has been used in

the solution of the time-dependent Maxwell's equations, a simple problem will be

used as a test case to check the validity of the method. The simplest possilble

structure to analyze is the homogeneously filled rectangular waveguide excited by an

electric field, Ez, infinite in length and uniform in the z (axial) direction so that a

simple two-dimensional problem results. However, the formulation to be described

in this chapter is for the partially filled rectangular waveguide structure shown in Fig.

3.1. This is appropriate because the solution to the homogeneously filled rectangular

Y

b E z : !i::i ::  :: : ,

h

F 2  a

Fig. 3.1 Structure of a partially filled rectangular waveguide.

26
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waveguide can be obtained as a special case of the partially filled waveguide by using

the same dielectric constant for region I and region II.

3.2. Formulation

As shown in Fig. 3.1, the problem is to find a behavior of an input pulse in a

partially filled rectangular waveguide excited by an electric field, Ez, infinite in length

and uniform in the z (axial) direction. The structure can be reduced to a two-

dimensional one because of the input condition. The formulation for such a problem

is simple, yet it contains all the essential features of the proposed method. This

problem corresponds to finding the cutoff frequencies of various TM to z modes in

the frequency domain [31]. Such information can be extracted from the time-domain

data obtained by the method described below.

The starting point of formulation is the time-dependent Maxwell's equations

expressed in scalar notation; that is,

aEz / Dy - aEy / az = - gi DHx / at (3.1a)

aEx / az - aEz / ax = - g aHy / at (3.1 b)

aEy / ax - aEx / ay = - . lhz / at (3. lc)

alz /ay - aly /az = F_(y) aEx/ at (3. 1d)

DHx / az - allz / ax = F_(y) DEy / at (3. 1le)

ally / ax- aHx / ay = e(y) aEz / at (3.1 f)

Because of the excitation, only Ez, Hx and Hy exist and a / &z = 0. Then,

equations (3.1a-f) are reduced to
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- . aHx I t= aEz I ay (3.2a)

- 3Hy /d t-Ez /ax (3.2b)

e(y) DEz / at -Hy / ax - DHx / ay (3.2c)

The time-dependent wave equation for the Ez field derived from Maxweli's equations

(3.2a-c) is

a2 Ez / ax 2 + a2Ez / a2y - pE(Y) a2 Ez / a2t = 0 (3.3)

Notice that the side wall boundary condition for Ez and Hx is Dirichlet-

Dirichlet and that of Hy is Neumann-Neumann. Figure 3.2 shows the cross-sectional

Y

J 1 2 .. i ......... N+1

lines for Ez and Hx

S! .................... ......... I
h . lines forHy

i 1 2 ..... i ... N a

Fig. 3.2. Discretization lines for Ez, Ix, and Hy incorporating the boundary

conditions.
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view of the structure shown in Fig. 3.1 with the appropriate discretized field lines

determined by the rule described in Section 2.2.1. Now the time-domain Maxwell's

equations and the wave equation are discretized in the x-direction only.

-g. D[Hx] / at = a[Ez] / ay (3.4a)

-pt a[Hy] / at = -[Dx 11] [Fz] Ax (3.4b)

e(y) a[Ez] / t [DxNN] [Hy] /Ax - [Hx] / ay (3.4c)

[DxxDD][Ez] / (Ax) 2 + a2 [Ez] /y 2 - gIE(y) a2 [Ez] / t 2= 0 (3.5)

where [DxDD], [DxNN] are the first-order difference operators and [DxxDD] is the

second-order difference operator, in which the side wall boundary condition is

incorporated as explained in Section 2.2.2. The variables [Ez], [Hx] and [Hy] are

column vectors with elements which are actually functions of y and t. The i-th

element of the column vector represents the field along i-th line in Fig. 3.2.

If the solution for [Ez] is found using equation (3.5), the other field

components are obtained from the equations (3.4a-.-c). However, it is very difficult to

solve the wave equation (3.5) directly because the equation represents a set of coupled

partial differential equations due to [DxxDD]. Since [DxxDD] is a real symmetric

matrix, there exists a real orthonormal matrix [TxDD] that transforms [DxxDD] into a

diagonal matrix [dxxDD] as explained in Section 2.2.3.

Using equations (2.15a) and (2.17a and b), the coupled partial differential

equations, (3.4a-c) and (3.5), can now be transformed into a diagonalized form as

follows.
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(3.6a)

H 1[d )DEz

Ax (3.6b)E (y) El = -LI d v]_y- x
Ax t x ,. ." y

dEAX L ay (3.6c)

2 + y 2 I 0 t2  0

Ax (3.7)

where - represents the transformed field corresponding to the real field without -.

The transf )rmation of the real field is accompanied by the diagonalization of the first-

order and the second-order difference matrices.

[E]-[TM t[E ,]  (3.8a)

[T M [H(3.8b)

Notice that equation (3.7) represents a set of uncoupled partial differential equations.

That is, it can be solved independently along the i-th line. A typical equation

describing the transformed field along the i-th Line is

02 t172
2 dxx 2

Y2 Z x at (y
Ax 

(3.9)

with the boundary conditions,
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Ez, y=O) = E~zy=b) = 0 (3.10a)

Ez ,y=h f= ,<y=h ) (3.1Ob)

Using the separation of variables technique, one can obtain the solution for the i-th

line

Ezi (y,t) =

I n (Ani cos uhnit + Bni sin wonit) jsin b..y), for region I

L n (Ani cos Conit + Bni sin cOnit) (sinK Klid / sin K2nih) sinK2niy,

for region i (3.11)

where Klni, K 2 ni and (oni are determined by the characteristic transcendental

equations derived from the interface boundary condition (3. 1Ob).

KIni cos KInid sin K2nih + K2 ni sin K1nid cos K2nih = 0 (3.12a)

toni 2 = [(Klni)2 - dxxiDD / (Ax) 2 ] / Izl

= [(K2ni) 2 - dxxiDD / (Ax) 2 ] / IZ2 (3.12b)

Notice that for a given n in equation (3.11), the underlined part constitutes the n-th

mode on the i-th line, Ezni (Y)

Ezni (Y) =

[ sin Klni(b-y), in region I

L (sin K I nid/ sin K2nih) sin K2niY, in region I (3.13)
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From this point on, there are basically two approaches. First, by knowing the

initial conditions for Ez, one can find Ani using the orthogonal property of the modes

[32].

b

f 0 E i(t=0O) ].t 0E(y) E , y)dy

Anl b

f Ezny) .0(y) dy (3.14)

One way to determine Bni is to use the causality condition for Hx and Hy,

which states

At At
H i (y,t 2 H (y,t =0 (3.15)

where At is the unit time interval in the sampling process. The expressions for Hxi

and Hyi can be found by integrating equations (3.6a and b) with respect to t.

Hx~ (t) = - if zidHOW - dt

. ... B C n i t+ sin - i cosKniy !

n 1 c ) n\ \ O)n i n i ) ~ W i ( 3 .1 6 a )

HY'j (t) - E fE1 dt
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Id E_? Cos COr sin CO~t
_ IZn Kni - Bni nit+ Ani n sin KniY

'1oAX COni COni / (3.16b)

Imposing the causality condition, equation (3.15), to equations (3.16a and b), one

can obtain

Bni = -Ani tan (Ciwni At /2) (3.17)

After Ani and Bni are determined, the solution at any point and time can be

found by using equation (3.11). Then, the real field can be obtained by the inverse

transform.

[E, (y,t)] = [T DD [E-Z (y,t)] (3.18)

Second, an alternative method is the application of a time-stepping procedure,

where equations (3.6a-c) are discretized in time:

1 1 At a-S=H y, 2-) - - E(yN)H' t °, yN + )N9 y E z , ( 3 .1 9 a )

1 "y '''YI At dxi'
H y i-, +yj ,) = - E ,',y ,N )I At dN Ny+N ) A x (3.19b)

Atd At aI
E z y,N+l) = E,i(y,N ) x Hy (y,N + j-)yN +

E(y) Ax 'E(y) (y

(3.19c)
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From the initial condition of Ez, one can find Ani at time t = 0 using equation

(3.14). We denote this quantity as AniN with N = 0. The solution (3.11) at the sime

step N can now be expressed in the form

N
Ezi (Y)=

F In AniN sin K lni(b-y), in region I

L In AniN (sin KInic / sin K2nih) sin K2niY, in region II (3.20a)

Similarly, for Hxi and Hy i at the time step (N + 1/2),

N+1f2

Xi (Y)=

F En BniN+1/2 cos Klni(b-y), in region I

L In BniN+,' 2 (cos Klnid / cos K2,ih) cos K2niY, in region II (3.20b)

N+1/2
Hyi (y)=

I n CniN+ l /2 sin Klni(b-y), in region I

L In CniN+l /2 (sin KInid / sin K2nih) sin K2 niY, in region II (3.20c)

Substituting the equations for the fields, (3.20a-c), into equations (3.19a-c),

a leap-frog type iteration scheme [1' can be implemented to calculate the coefficients

of modal fields on the i-th line at any time step N.

N+11' N-IU At N

Bni =Bni +-(Kni AniI 0 (3.21 a)
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N+ 1'2 N-l,2 1 At DD N=n n + - - d x ,i A n i

4 0 Ax (3.21 b)

N+1 N 1 At NN N+I/2 At N+1/2
A = Ani---dxi Cni -- Kn iBni

E(y) Ax r(y) (3.21c)

where Kni becomes either Klni or K2ni depending on the region. After the

coefficients at the N-th time step are determined, the transformed field can be obtained

by the equations (3.20a-3). The real field at the N-th time step can be obtained by

invoking the inverse transformation as described above to zi.

After the history of pulse scattering is obtained in the time-domain, the cutoff

frequency spectrum of the structure can be extracted via the Fourier transform of the

time-domain data. If the time-domain data consists of N data points with unit

sampling time At, the resolution of the frequency dcmain information is At = 1 / NAt

and the maximum frequency range that can be obtained is NAf/2.

For comparison, the cutoff spectrum of the same structure can also be

calculated analytically by using the transverse resonance technique. For TM to z

mode (LSE mode), the eigenvalue equation is given by [32]

p tan (qh) = -q tan (pd) (3.22a)

P2 = Ei -o - (nit/a)2  (3.22b)

q2 = F2 C02'0o0 - (nTi/a) 2 , for n = 1 ...... (3.22c)

3.3. Results and Discussion

3.3.1. Homogeneously Filled Rectangular Waveguide
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The structure considered has dimensions: a = 2 [cm], b = I [cm], l = 3, and

E2 = 3. Figure 3.3 depicts the Ez field distributions in the waveguide cross-section

(x-y plane) at each time step after a pulsed Ez excitation is imposed at t = 0 at the

center of the cross section. Figure 3.4 shows the spectrum ?f the time signal of Ez

where the waveguide cutoff frequencies are represented by the peaks. The cutoff

frequencies obtained by present method differ by less than one percent from the

analytical values.

3.3.2. Partially Filled Rectangular Waveguide

The structure is; a = 2 [cm], b =1 [cm], h = 0.3 [cm], el = 1, and E2 = 3.

Figure 3.5 depicts the Ez field distributions in the waveguide cross section (x-y plane)

after a pulsed Ez excitation is imposed at t = 0 at the center of the cross section.

Figure 3.6 shows the spectrum of the time signal of Ez where the waveguide cutoff

frequencies are represented by the peaks. The cutoff frequencies obtained differ by

less than one percent from the analytical values.

It should be noted that the two approaches ( the modal expansion and the time-

stepping ) described above should be equivalent in principle. However, each has

advantages and disadvantages. For instance, if one deals with a time-dependent

excitation, the time-stepping method would be simpler to implement. Otherwise, the

modal expansion method is more efficient as long as only the results at a particular

time are of interest. However, if any frequency-domain information is needed, the

time history needs to be found. The first method needs to be used at many time

instances. The time-stepping method automatically generates the time history.

Hence, the amount of computation would be about the same. In many cases, there
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(a) (b)

(C) (d)

Fig. 3.3 The Ez-pulse scattering in a homogeneously filled rectangular waveguide

(a=2, b=1 cm, F, =3). (a) t=-O, (b) t=20, (c) t=30 and (d) t=80 p-sec.

% .0

.6 (C)

LA.6AI &

a.o % * t o t t . a

.6GIMO QZ

Fig. 3.4 The cutoff frequency spectrum of the homogeneously filled waveguide

when the initial input is placed at the center of the waveguide.

(a) TM 11, (b) TM31 and (c) TM51 modes
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(d)

Fig. 3.5 The Ez-pulse scattering in a partially filled rectangular waveguide

(a=2, b--l, h=.3 [cm), El=l, and F-2=3).

(a) t=O, (b) t-=20, (c) t-40 and (d) t=60 p-sec.

(a)

Fig. 3.6 The cutoff frequency spectrum of the partially filled wavceguide when

the initial input is placed at the center of the waveguide.

(a) T'M11, (b) TM3 1, (c) TMl12 and (d) TM32 modes
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are ambiguities in finding the initial condition for the time derivative. In such

instances, it may be simpler to use time stepping to generate the time history

required. Finally, it is also possible to switch from one method to the other.

3.4. Conclusions

A new time-domain technique is presented in which an analytical process is

incoporated along one of the spatial dimensions so that the dimensions of the problem

are effectively reduced by one. The present approach can be used to calculate the

cutoff frequency of other planar transmission structures and can be extended to

propagation problems. It has a number of potential advantages over many other time

domain methods. First, the method is believed to be efficient since much analytical

processing is used. Second, the problem can handle open boundaries in the vertical

(y) direction because of the analytical solutions used in y.



Chapter 4

Time-Domain Method of Lines Applied to Finned

Waveguide

4.1. Introduction

A new time-domain method was studied for a partially filled rectangular

waveguide in the Chapter 3 in which the interface boundary condition is not changed

along one of the spatial dimensions (transformed direction). Therefore, the problem

could be reduced into a one-dimensional boundary value problem which requires only

one-dimensional discretization.

In the previous chapter, the feasibility of a new time-domain method was

shown by calculating the cutoff frequencies of the partially filled waveguide problem

accurately. In this chapter, the method will be extended to a structure which contains

a metallic strip at the interface boundarv. This extension also makes use of the

Method of Lines and an analytical process can be incorporated along one of the spatial

dimensions. However, because of the non-uniform boundary condition in the

transformed direction, each line is not independent but related to each other in order to

match the required interface boundary conditions. Consequently, instead of

considering one-dimensional eigenmodes for each line as in the case of the uniform

interface boundary condition problem, two-dimensional eigenmodes should be

considered in this structure [33].

40
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4.2. Formulation

As shown in Fig. 4.1, the problem is to find the time-domain behavior of an

input pulse in a uniform rectangular waveguide excited by an electric field infinite in

length and uniform in the z-direction. The structure can be reduced to a two-

dimensional one because of the input condition. This problem corresponds to finding

the time-domain behavior of the pulsed input and the cutoff spectrum of the given

structure. The formulation is very similar to the partially filled waveguide problem

except for the treatment of the interface boundary condition.

Y

b

h

2

Fig. 4.1 Structure of a finned rectangular waveguide.

Because of the excitation, only Ez, Hx and Hy exist and a / &z - 0. Also,

notice that the side wall boundary condition of the fields Ez, Hx is Dirichlet-Dirichlet

and that of Hy is Neumann-Neumann. Since the structure is uniform in the space

above and below the y = h axis, the time-domain equations are discretized in the x-

direction only. Figure 4.2 shows the cross-sectional view of the finned rectangular



waveguide with the appropriate discretized field lines incoporating the boundary

conditions. Now, Maxwell's equations in (3.1 a-f) are reduced and discretized to

Y
A

i - 1 2 .................... Nx Nx+l
b i f

i= 1 2 .................... N x a

Fig. 4.2. The cross-sectional structure of a finned rectangular waveguide.

-g a(Hx] / at = a[Ez] / ay (4. la)

-I a[Hy] / at = [DxDD] [Ezj / Ax (4.1 b)

e(y) a[Ez] / t = [DxNN ] [Hy] /Ax - a[Hx /ay (4.1c)

The governing equation for Ez is

[DxxDD][Ez] / (Ax) 2 + a2 [Ez] / y2 - p z(y) a2 [Ez] / at2 = 0 (4.2)

with appropriate boundary conditions ;

[Ez(t,y=h+)] = [Ez(t,y=h-)], for all t and i (4.3a)



43

[Hx(t,y=h-)] - [Hx(t,y=h+)] = [Jz(t,y=h)], for all t and i (4.3b)

[Ez(t,y=h)] = 0, for all t and i on M (4.3c)

[Ez(t,y--0)] = [Ez(t,y=b)] = 0, for all t and i (4.3d)

where [DxDD], [DxNN], [DxxDD] are difference operators in which the side wall

boundary condition is incorporated (see Tables 2.2 and 2.3). The variables [Ez],

[HxI and [Hy] are column vectors representing the fields along each line and are

functions of y and t. Notice that equation (4.2) is a system of a coupled partial

differential equations.

Since [DxxDD] is a real symmetric matrix, there exists a real orthogonal matrix

[TxDD ] that transforms [DxxDD] into a diagonal matrix [dxxDD]. We can now

transform the real field [Ez] into a transformed field [Ez] = [TxDD]t [Ez] where the

superscript t stands for transpose. The transform of equation (4.2) is

32  32

1 - -t(Y) 4  [E] = [0]

Ax2 (4.4)

with the transformed boundary conditions of (4.3a--d)

E(t, y=h+)] = Ez(t, y=h)], for all t and i (4.5a)

[H-(t, y=h) - Hx(t, y=h)] = - [jY(t, y=h)], for all t and i (4.5b)

[E(t, y=h)] = unknown , for all t and i on M (4.5c)

[E(t, y=O)] = [E2(t, y=b)] = [0, for all t and i (4.5d)
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Notice that equation (4.4) is a set of uncoupled partial differential equations

related by non-uniform boundary conditions (4.3a-c). For the i-th line, equations

(4.4) - (4.5c) become

2 2

Ax I y2 at 42  )

(4.6)

E,(t, y=h ) = E~z,{t, y=h) (4.7a)

H X i(t, y=h )- H 1 t, y=h)=- J'(t, y=h) (4.7b)

E'zt, y=h) = unknown (4.7c)

E~zt, y--O) = E21(t, y=b) 0 (4.7d)

By means of the separation of variables technique, the intermediate solution on the i-

th line for the n-th mode which satisfies the transformed boundary condition, (4.5a

and d), is

Ezt,y) =

(Ani cos oiwnit + Bni sin oInit) sin Klni(b-y), in region I

(Ani cos otit + Bni sin conit) (sin Klnid / sin K2nih) sin K2 niY, in region I

(4.8a)

where Klni, K2 ni, and 0Oni are related by

KIni2 = oni2 p.1 + dxxiDD / (Ax) 2

K2ni2 = Woni 2 I.L2 + dxxiDD / (Ax) 2 (4.8b)
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The modal current [Jzn] obtained from the discontinuity of the corresponding modal

magnetic field [Hxn] at y = h by using (4.1 a) is

j ~t,y=h) = fn$t) sin Kli .2itt sin K2ni nics K2nh + Klnicos Klnd

= Y 1 ty=h) E-,nt'y=h) (4.9a)

where fni(t) = (Ani sin (onit / ohni - Bni cos (onit / ohni) (4.9b)

- 1 1 Anisin0 1nit-Bnicos0nit
Yni= ~(K1ln icotK 1 n + K2,1 icotK2 n P)gl Con i An i coS0)n it - B ni sincon it

(4.9c)

Now, the final boundary condition, (4.3b), is applied in the real field domain.

[.n] = [TDDI Iln] [T 3[Ez,n] (4.10)

where [Yn(t,y=h)] is the diagonal admitance matrix with diagonal elements given by

equation (4.9c). Because Jzni = 0 if i is on the non-metallic portion (D) and Ezni = 0

if i is on the metallic portion (M), the characteristic matrix equation can be

derived.from equation (4.10).

li.n~lij on D = {[T j [T;;] [TxDD]),.4Ez,nii on D (4.11)

where "D" represents the non-metalization portion of the substrate surface as shown

in Fig. 4.2 and the subscript "red" represents the reduced matrix obtained from the
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full matrix in { } by removing the rows and columns corresponding to the

metalization portion.

In order for the n-th eigenmode, [Ezn], to satisfy (4.11) at all times with a

non-trivial solution, the time-dependent solution for each line should have the same

functional form except for a constant factor, and the determinant of the reduced matrix

should be zero. The final solution of the [Ezn] is

Ejnt,y) =

F (An cos COnt + Bn sin oWnt) Cni sin Klni(b-y), in region I

L (An cos ont + Bn sin (ont) Cni (sin Klnid / sin K2nih) sin K2niY, in region II

(4.12)

where (on is n-th eigenvalue of the characteristic equation given by

DDD

det ([Tv]I [Yn] E[TD.D }red = 0(4.13)

and the coefficients, Cni, can be derived from the eigenvector, [Ezn], of (4.11)

corresponding to the n-th eigenvalue. The procedure described above is very similar

to the frequency-domain method of lines [28].

Finally, any real field can be expanded in terms of the eigenmodes in the

transformed domain

E "t,y) =

[ Xn (An cos (Ont + Bn sin Ont) Cni sin K1ni.b_, in region I

L In (An cos Wnt + Bn sin (ant) Cni (sin KI id / sin K2n--n-- ,

in region 11 (4.14)
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Notice that for a given n in equation (4.14), the underlined part constitutes the n-th

mode of the i-th line

E,(y) =

F sin Klni (b-y) in region I (4.15a)

sin KlnidsinK1 i dsin K2ni Y
L sin K2ni h , in region 11 (4.15b)

In equation (4.14), An can be found from the initial condition of

[Efz(t= O'y)j = [T x ][Ez(t=Oy)j and orthogonality property

[E~~t=,y)] [E'zn(y)] dy

frl bEtOy

An- 0

(4.16)

Also, the causality condition assumed by time iteration method [34] can be used to

find Bn

Bn = An tan(On At / 2), where At < Ax/ 2 Cmax (4.17)

where Cmax is the maximum wave phase velocity within the structure. The real field

at any time can be obtained by invoking the inverse transformation to the transformed

field, [Ez~t'y=Y()];
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4.3. Results and Discussion

The structure of the finned waveguide considered is a = 1 [cm], b = 2 [cm], h

= 0.5 [cm], M = 0.25 [cm], F1 = 3, and E2 = 3. To check the validity of the method,

the eigenfrequency of the finned rectangular waveguide for the ciominant TE mode

was found and compared with Hoefer's result [24] in Fig. 4.3. Good agreement was

0.26-

0.24

0.22-
ac

0.20-

0.18

0.16 .
0.0 0.2 0.4 0.6 0.8 1.0 1.2

M/a

Fig. 4.3. Cutoff frequency of the fined waveguide shown in Fig 4.2

with b/a=2, h=l.

( light squares ; present method, dark squares ; Hoefer [24])

obtained. For further confirmation, the Ez field distributions in the homogeneously

filled rectangular waveguide are calculated by the present two-dimensional method,

and the result is compared with that obtained by the one-dimensional method

described in the Chapter 3. Figure 4.4 shows the iesult. Even though the ripple

seems to be higher than that of the one-dimensionai analysis, the result shows that the

wave scattering characteristics can be analyzed by the two-dimensional time-domain
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method. The pulse propagation and scattering in the finned rectangular waveguide is

dipicted in Fig. 4.5.

() (a) W

(c) ) c(d

Fig. 4.4. Pictures of a pulse scattering in a partially filled rectangular waveguide

with a=2, b=l, h=.3, El=l, E2=3. ([I] ; one-dimensional method,

[IU] ; two-dimensional method)

(a) t--O, (b) t=20, (c) t--40, and (d) t=60 [p-sec]

4.4. Conclusions

In this chapter, it was shown that the two-dimensional Time-Domain Method

of Lines can be used to analyze planar transmission structures which have a non-

uniform boundary condition at the interface boundary along the transformed direction.

This is accomplished by the two-dimensional eigenmode expansion concept instead of

the one-dimensional method used in the case of the uniform boundary problem.
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(b)
(()

Cc) (d)

Fig. 4.5. Pictures of a Ez pulse scattering in a finned rectangular waveguide

with a=l,b =2,h=0.5,M--0.25, and El= E 2=3.

(a) t=0, (b) t=30, (c) T-40, and (d) t=60 [p-sec]



Chapter 5

Characterization of Uniform Microstrip Line and its

Discontinuities using Time-Domain Method of Lines

5.1. Introduction

In the previous chapters, the TDML has been applied to the two-dimensional

problems to obtain the scattering data of the input pulse in the time domain. The

cutoff frequency spectrums of planar transmission lines were extracted from the time-

domain data via the Fourier transform. Although the cutoff frequency is an important

parameter characterizing a waveguide structure, the propagation characteristics are

even more important to the microwave circuit designer. In this chapter, it will be

shown that the TDML can be extended to the three-dimensional propagation

problems. The time-domain behavior of the input pulse in a planar transmission line

circuit can be obtained by TDML. From the time-domain data, the frequency domain

characteristics for a wide range of frequencies can be found via the Fourier transform.

The procedure and the formulation for the characterization of the three-dimensional

structure is presented [35]. The characteristics of a uniform microstrip line and its

discontinuities (step-in-width, open-end and gap discontinuities) are presented and

compared with available published data.

51
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b

r input field a X

Fig. 5.1 A general planar transmission line with discontinuity in

a shielded rectangular waveguide

5.2. Formulation

Let us consider a general planar transmission line with a discontinuity, as

shown in Fig. 5.1. In order to apply the TDML, electric or magnetic walls need to be

placed at both ends of the waveguide so that a resonant structure will result. Figure

5.2 shows the top view of the structure with discretization points for the y component

of the electric field, Ey. It is assumed that the structure has spatial symmetry in x-

direction so that the problem domain can be reduced by a factor of two.

5.2.1. Discretization

As shown in Fig. 5.2, the structure is discretized by field lines which are

properly placed to satisfy the boundary conditions on the side walls and the end
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side wallA ; M-wall

Z c Nz . . . . 2 j=1

wl2

w2 A .

0 0 0 0 , Nx

a
side wall B ; E-wall

Fig. 5.2 Top view of the structure shown in Fig.5.1 with the proper

discretization points for Ey component

walls. For example, since the Neumann boundary condition for Ey is applied on the

side wall A and the Dirichlet condition on the side wall B, the Ey points are located

away from the side wall A by one half of Ax and away from side wall B by one Ax.

Also, it is important to choose the Ey nodes as the outermost nodes on the strip in

order to reduce the error in the calculation of the field distribution. After discretization

of the space, the original field in the continuous space is approximated by many field

lines parallel to the y-axis at the discretization points

Ey(x,y,z,t) ---> [Ey,k(y,t)] t = [Ey,1, Ey,2, ..., Ey,NxNz] t  (5.1)

where k = i + (j-l) Nx, I < i5 <Nx, 1 <j 5 Nz . (5.2)
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5.2.2. Expansion of the Input Pulse

In the structure shown in Fig. 5.1 with end walls, a field distribution at any

time t, [Ey(y,t)], can be expanded by modal field distributions, [Eyn(y)] as follows;

[Ey(yt)] = En (An cos COnt + Bn sin Wnt) [Eyn(Y)I (5.3)

where [ ] denotes a column vector whose i-th component represents the field value at

the i-th discretization line as shown in equation (5.1). Also the subscript n denotes

the mode number. One thing to be mentioned here is that if the structure and the

initial input support any static charge distribution, the DC-mode (con = 0) should be

included in equation (5.3) to obtain the correct time- and frequency-domain data.

In the expansion of (5.3), the coefficients An can be determined by the input

field distribution, [Ey(y, t--0)] and the orthogonal property of the modal fields

f 'Ey(y,t=0)]jEy'n(Y)] dY

f '[E y.n(y)]JE y, n(Y)l dr 
54

Also, the Bn can be found by the causality condition used in the time iteration

method[ 19, 34]

Bn = An tan (o)n At / 2) (5.5)

where At < min(Ax,Az) / Cmax 1 3 (5.6)

and Cmax is the maximum wave phase velocity within the structure.
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In order to find the engenfrequencies and eigenmodes of the structure, a

technique used in frequency-domain Method of Lines [29] is borrowed. In this

technique, the characteristic equation is obtained by applying the metallic boundary

condition to the metalization on the dielectric interface boundary. The equation is

given by (see Apendix 3 for details)

[Ex]r [Gxred r for static fields (5.7a)

[E1 [[Gzz][G zx] [[Jz]I =[o]

[E ~ ~ r~ [d[ ] Gx red for time-harmonic fields (5.7b)

In order to obtain a non-trivial solution of equations (5.7a and b),

det [G((,)] red = 0, for time-harmonic fields (5.8)

where the subscript "red" represents the reduced matrix corresponding to the

discretization points on the metalization.

After the eigenfrequencies are found, equations (5.7a) and (5.7b) can be used

to obtain the charge distribution, [p]t, and the current density distributions,

[[Jz],[Jx]]t. The modal field distributions, [Eyn(Y)], can be derived from these

quantities. It is found that the system of equations (5.7a) and (5.7b) need to be

solved by the QR method [40] to ensure stability of the results.

5.2.3. Time-Domain Data and Frequency-Domain Characteristics

Once the procedures described in Sections 5.2.1 and 5.2.2 are carried out, all

the constants in equation (5.3) are determined so that the field value at any point and
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time can be calculated. Therefore, the characteristics of a circuit can be obtained by

observing the propagation and scattering of the input pulse in the given circuit. In this

chapter, four structures will be tested, namely, the uniform microstrip line and three

commonly encountered discontinuities (step-in-width, open-end and gap).

iL 0

Fig. 5.3 Top view of a uniform microstrip line with two observation planes

and initial input puise.

5.2.3.1. Uniform Microstrip line

Figure 5.3 shows a uniform microstrip line with two observation planes. In

this case, the transfer function can be found from

exp[-y(c0)L = V.-",, 7=1 ' I Vv(co,z=O) (5.9)

where (tc) = c(w)+j3(w) = propagation constant of the uniform microstrip line.

Vy(co,z--0) = Fourier transform of [Vy(t,z--O)] at a fixed x.

Vy(&o,z=L) = Fourier transform of [Vy(t,z=L)] at a fixed x.



57

Vy(t,z) is a voltage defined as the line integral of Ey from the microstrip to the

ground plane.

Vy(t) = fEy(t,y) dy, at fixed x and z (5.10)

where the integral was evaluated by using the 4-th order Gaussian quadrature. Stable

results can be obtained by using this choice of voltage definition for the calculation of

the frequency-domain characteristics.

The effective dielectric constant can be derived from the calculated phase

constant, 03, by

eeff(O) = p32 (o3) / o32t 0 E0  (5.11 )

The voltage-current definition is used for the characteristic impedance

calculation.

Z(O) = Vy(,z--0) / Iz(,z=O) (5.12)

where the current is found by a line integral of the H-field around the microstrip line

at z=0.

f "H(y=y,) dx + f H4(x=x 1) dy + f H,(y=y) dx
(5.13)

5.2.3.2. Discontinities

Figure 5.4 shows a general two-port discontinuity with a uniform microstrip

line connected to each port, where two reference planes and two observation planes

are indicated. In order to obtain the frequency-dependent scattering parameters of the
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Z2 0 0 Z

Fig. 5.4 General two-port discontinuity with a uniform microstrip line connected

to each port, where two reference planes and two observation planes are

indicated.

discontinuity, the incident wave, Ey,inc, and the reflected wave, Eyref, should be

calculated at some point on the input observation plane and the transmitted wave,

Ey,trs, at the corresponding point on the output observation plane. Then,

SI 1 (C)) = [Vy,ref(CoZl) / Vy,inc(O,zl)] / exp[-2yl (co)zl] (5.14)

S21(CO) = [Vy,trs(Co,z2) 4ZO1 (o) / Vy,inc(coz2) '1Z02(CO) ] /exp[-y1 (co)zl-

Y2(co)z2)] (5.15)

where y1 (co), y2(o) are the propagation constants of the uniform microstrip lines

connected to each port of the discontinuity. Note that only S I1 exists for a one-port

structure, such as an open-end.

5.3. Results and Discussion
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In this chapter, four structures on alumina subtrate (Sr = 9.6, h = 0.635 or 0.7

rmm) shielded by a rectangular waveguide (a = 2, b = 10, and c = 45 Mm) were

studied. These are a uniform microstrip line, a step-in-width, an open-end and a gap.

In the calculation of the field variation in the time domain, the following number of

discretization points were used.

number of discretized points in x-direction = 20 (Ax = 0.095 mm)

number of discretized points in z-direction = 100 (Az = 0.445 mm)

number of modes = 19

As a rule of thumb, the number of discretized points is chosen so that the

discretization length is approximately one-tenth the length of the smallest wavelength

to be considered.

xz

(b)

Fig. 5.5 Ey configulation beneath a uniform microstrip line (a=2, b=10, h=0.635,

W--0.635 mm) (a) t--0, (b) t=40, (c) t-80 and (d) t=120 p-sec.
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Figure 5.5 shows the pulse propagation along the uniform microstrip (h =

0.635, W=0.635 mm) in the time domain. In order to check the convergence of the

method with respect to the number of modes, the effective dielectric constant is

calculated using a different number of modes. As shown in Fig. 5.6, convergent

results can be found by using more than seventeen modes for the tested structure.

.,.

; .1

4. /

!'A too]S..I t I J • i I | ! " I

S'l I Z S '1 $ 6 7 0 I I

Fig. 5.6 Convergence of the method with respect to the number of modes.

A=19, B=17, C=15, D=13, E=I 1 and F=curve fit formula [361

Figure 5.7 shows the propagation constant, 13, obtained by using the Fourier

transform of the time-domain data shown in Fig. 5.5. The results agree well with

those from the curve-fit formula [36]. Figure 5.. shows the calculated transmission
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coefficient which is supposed to be one. The deviation from the exact value is less

than 1%.

6 | I I

5

2

0
0 2 4 6 8 10

freq [GHz]

Fig. 5.7 Dispersion relation for the uniform microstrip line (a=2, b=10, h=.635

[mm], E 1=1, and E2=9. 6) obtained by TDML.

-a TDML, 0 curve-fit formula [36] (open structure)

Figure 5.9 shows the characteristic impedance (ZO) of the structure from both

the TDML calculation and the closed form formula given in reference [36]. The

difference between the two results is about 6 % and it is believed to be caused by the

side wall effect which is known to reduce the characteristic impedance [37].
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1 .4

1.2

0.6

0 2 4 6 8 10

freq [GHz]

Fig. 5.8 The ransmission coeffizient MF of the uniform mnicrostrip line obtained

by TDML.

~ TDML, exact

52

50

N

0 2 4 6 8 10

freq [GHz]
Fig. 5.9 Characteristic impedance for the uniform mnicrostrip line shown in Fig. 5.5.

e TDML, curve-fit formula 1361 (open structure)
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x

(Ca)

(c) (d)

Fig. 5.10 Ey configuration beneath a step discontinuity (a=2, b=1O, h=0.635, WI=

1.27, W2=0.635 mm) (a) t=O, (b) t=40, (c) t=80 and (d) t=120 p-sec.

I 1 I I

1. 0 * eI

- 0.8

- 0.6

r 0.4

0.2

0.0 1

0 2 4 6 8 10
freq [GHz]

Fig. 5.11 Scattering parameters(S 11, S12) for the symmetric step discontinuity

shown in Fig. 5.10.

S II TDML, " S II ref. [26]
S $21 ' S21
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Figure 5.10 shows the scattering of the pulse at a microstrip step discontinuity

in the time domain. Using equations (5.14) and (5.15), the frequency-domain

characteristics can be extracted from the time-domain data. Figure 5.11 shows the

frequency-dependent scattering parameters of the given structure with published data

[26].

Figures 5.12 and 5.13 show the scattering of a pulse at a microstrip (h--0.7,

W=0.7 mm) open-end and a gap (s=0.35 mm) in the time domain, respectively. The

frequency-dependent scattering parameters derived from the time-domain data are

shown in Figs. 5.14 and 5.15. Also plotted in these figures for comparison are the

FDTD results reported in [26]. The results agree reasonablely well with [26],

although they do show some undulation due to discretization errors. It is believed

that this error can be reduced by using a non-uniform discretization scheme without a

significant increase in the computation time. Finally, this method can be easily

extended to other types of planar transmission structures shown in Fig. 1.3.

5.4. Conclusion

It has been demonstrated that the time-domain method of lines is a reliable and

efficient method which is capable of dealing with pulse piopa ,ation and scattering in

discontinuity problems in planar trar ;mission lines. This is an extension of the two-

dimensional results described in the previous chapters. It has been found that the DC-

mode should be included in the modal field calculation to obtain correct results. The

field can be described accurately by the proper placement of the discretized Ey field

points near the edge of the microstrip line. Also, the frequency-domain characteristics

obtained from the time-domain data have been made more stable by applying the QR
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algorithm in the eigenmode calculation and by using the integrated field quantities in

the extraction of frequency-domain parameters. The method can be appiiei to other

planar structures.
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(b)

(C) (d)

Fig.5.12 Ey configuration beneath a iirostrip open-end discontinuity (a=2,b= 10,

h--0.7, W--0.7 mm) (a) t=-O, (b) t=80, (c) t=120 and (d) t=160 p-sec.

x

(C) (d)

Fig. 5.13 Ey ronfiguration beneath a microsuip gap discontinuity (a=2, 6b=10, h--0.7,

W--O.7, s--0.35 mm) (a) t=-O, (b) t=40, (c) t=80 and (d) t= 120 p-sec.
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Fig.5.14 The magnitude and phase of S I1 for the microstrip open-end

discontinuity.

-mag p. mag [26]
- phase pre -fnt method, - phase
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Fig.5.15 Magnitude of SI I and S21 for a microstrip gap discontinuity

(E r=9.6, h=0.7 mm, w/h=l, s/h--0.5)

S21 S2] - ,2I [ S21 61
--- S11 present method, 1 S 26



Chapter 6

Conclusion

6.1. Achievements

A new time-domain method, termed the Time-Domain Method of Lines, was

proposed for the analysis of microwave and the millimeter-wave planar transmission

lines and their associated discontinuities. This method makes use of the Method of

Lines technique in solving the time-dependent Maxwell's equations. The unique

structural feature of planar circuits, i.e., the space above and below the interfacing

surface is uniform and homogeneous, can be incorvorated. Therefore, three-

dimensional structures are discretized only on the two-dimensional substrate surface

and an analytical solution is used along the normal direction. Because of this semi-

analytical property of the method, it has a number of potential advantages over many

other time-domain methods. First, memory and computation time can be reduced

since analytical processing is employed. Second, this method can handle an open

boundary in the vertical (y) direction easily because of an analytical solution used in

the y-dire-" "-n.

With this new method, the accurate cutoff frequency spectra of a partially

filled rectangular waveguide and a finned rectangular waveguide were found from the

impulse response of the structures. Also, the method was extended to three-

dimensional problems such as pulse propagation and scattering in planar transmission

lines with discontinuities. The characteristic impedance and the propagation constant

68
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for a microstrip line and the scattering parameters of its discontinuities (step-in-width,

open-end and gap discontinuities) for a wide range of frequencies were obtained from

the time-domain data.

6.2. Future work

In future research, the proposed method needs to be applied to the analysis of

other discontinuities in many planar transmission line circuits. The radiation effect of

a discontinuity can be analyzed by the solution of an open boundary problem in the y-

direction by using the proposed method.

The method itself can also be modified to improve the accuracy of the results

without a significant increse in the computation time. This is possible through the use

of a non-uniform discretization scheme [33].

Since most of the computation time in this method is spent on the calculatic,;n

of the eigenfrequencies and the corresponding eigenmodes, it is desirable to devise a

scheme to avoid that calculation. The two-region approach is a candidate for a new

scheme, where the original problem is divided into two regions (above and below the

substarte surface) and solved in each region with the equivalent magnetic current

source on the. interface boundary [381. For example, Fig. 6.1 shows the equivalent

two-region problem, where the original inhomogeneous problem shown in Fig. 4.1 is

divided into two homogeneous structures with equivalent source on the aperture

region.

M=nXE (6.1)
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Y

i=1 2 ...i- i i+1 ......

j=1

2

3x

M

M

Fig. 6.1 An equivalent two-region problem of the probem considered in Chapter 4.

Also, Fig. 6.2 shows the another equivalent structure derived from Fig. 6.1

applying the image theorem [39]. Notice the structure 6.2 is a simple to solve

because it is homegeneous and every discretized line is really independent each other

so that the procedure described in the chapter 3 can be used. In this approach, the

problem is to find the accurate equivalent magnetic current on the aperture at each time

step. It can be obtained by applying the finite difference scheme around the aperture

region in Fig. 6.1.
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2M 2M

Fig. 6.2 An equivalent structure of Fig. 6.1 using the image theorem.

N+I N N-i.
E z (ij) =2E(ij) - Ez (ij)

2

c 2At 2 N N N
2 Ez (i+lj) - 2Ez(ij) + Ez(-lj))

Ax
2 2

cAt N
- (----kEz(ij+l) - 2Ez(ij) + Ez(ij-1)

Ay (6.2)

where superscript N represents the N-th time step.

The difficulties encountered in this approach were in the representation of the

pulse in terms of continuous basis functions on each line accurately and in the

reproduction of original wave in terms of sampled pulses.



Appendix 1

Determination of the Eigenvalues and Eigenvectors of

Second-Order Difference Matrix

The diagonalization matrix can be obtained from the eigenvectors belonging to

the eigenvalues of the real symmetric matrix [Dxx].

2
[Dxx]- XkI])[X]k= o (Al.1)

where [Dxx] is given by equation (2.14) and the subscript k means the k-th

eigenvalue and eigenvector.

Since [Dxx] is a tridiagonal matrix, equation (A1.1) actually represents N second-

order difference equations
_(k) +(2-X2 X(k) _X(k)=0

- i_l +  2- k )  i i+l=1
, i= 1,2, ..... N (A 1. 2)

where the subscript i means the i-th element of the k-th eigenvector.

Using the solution of the form,

(k) = Jik+ B ke -j iqP
Xi =Ak k (A1.3)

the characteristic equation can be obtained from (A 1.2), which has the characteristic
root

2
Sk =2( 1 - cos P k) (A1.4a)

or
2 2
k=4sin P k 2  (A1.4b)

72
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where Pk depends on the boundary conditions and are determined by using the

boundary conditions shown in Table 2.1.

(i) Neumann - Dirichlet Condition

Assuming the number of the discretized lines is equal to N, the first and the

last equation become

x0(k) - x1(k) = 0 (A1.5a)

XN+I(k) = 0 (A 1.5b)

or

I -e ( P l k eJ kAej(N+ 1 )( j e-j(N+ 1 )(P BkJ (A1.5c)

In order to have nontrivial solutions,

k- 1/2
NP +l2 (A1.6)

Using the first row of equation (A 1.5) and the equation (A 1.3),

(1 -ej ) Ak=-( 1 - e 'jtPk) Bk (A1.7a)

e J' /2 Ak = e j( 2 Bk (A1.7b)
(k)X k) A k COS I i -1 2 ) k( ! 8

After normalization, the formula for the elements of the transformation matrix can be

obtained.
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/ 2 (i-1/2)(k-1/2)r
TNDik = N+l/2 N+l/2 , i,k= 1,2,..., N(A1.9)

(ii) Dirichlet - Neumann Condition

Assuming the number of the discretized lines is equal to N, the first and the

last equation becomes

X0 (k) = 0 (Al.1Oa)

- XN(k) + XN+l(k) = 0 (Al.10b)

or

1 1 l[Ak] 0

e JN (ek - ) e 1) J[Bk] (A 1Oc)

In order to have nontrivial solutions,

k- 1/2Pk-N +i1/2 n , k=l1,2, ... N (A1.1

Using the first row of equations (Al.10c) and (Al.3),

Ak = - Bk (A 1.12a)
(k)

Xi =AksinPk (A l.12b)

After normalization, the formula for the elements of the transformation matrix can be

obtained.

S 2 sin i(k- 1/ )t1N+l/2 N 2, i,k= (Al.13)
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(iii) Dirichlet - Dirichlet Condition

Assuming the number of discretized lines is equal to N, the first and the last

equation become

X0 (k) = 0 (A1.14a)

XN+I (k) = 0 (A1.14b)

or

e j(N+ I ) k e 'j(N+1)Pk ]BkL (A1.14c)

In order to have nontrivial solutions,

k t~k=N~ k k= 1,2, ..... N
(Pk + I(A1. 15)

Using the firs: row cf equations (A1.1 -c) and (A 1.3),

Ak =-- EK (A 1. 16)
(k) Ak sin i Yk (A1. 17)

After normalization, the formula for the elements of the transformation matrix can be

obtained.

2 .ikit

"DDk= N +I sirN i,k=1, 2, ... , N
VN+ (A1.18)
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(iv) Neumann - Neua,3nn Condition

Assuming the number of the discretized lines ;s equal to N+I to be consistant

with the D-D case, the first and the last equation become

X0 (k) - Xl(k)= 0 (A1.19a)

XN+2 (k) - XN+l (k)= 0 (A1.19b)

or

1 (1I- ej~pk) Ak

j(N+ I) k ej(N + 1 ) =0 ( - e'J k)Bk 0

. I (A 1.19c)

In order to have nontrivial solutions,

k t
(A1.20)

Using the first row of equations (A1. 19c) and (A1.20),

(- ej ) Ak= - - k  (A 1.2 1a)
e J )/ Ak = e -j(/2 Bk (A1.21b)

Xkk)
X1  AkcOs (i- 1 /

2 ) Pk (A1.22)

After nomalization, the formula for the elements of the transformation matrix can be

obtained.

TNN" = N

2 (i- 1/2)k t
TNNi k+ + os N+ i=l 2,..., N+1, k l, N

(Al.23)



Appendix 2

Calculation of the Quasi-Diagonal Matrices [dx] of the First-

Order Difference Operator [Dx]

The matrix [dx] is defined as a product of the first-order difference matrix

[Dxl with the corresponding transformation matrix [Tx] from the right and with the

transposed matrix [Txd]t of the dual boundary value problem from the left.

[dx] = [Txd]t [Dx] [Tx]  (A2.1)

where the superscript 'd' drnotes the dual boundary condition. Before [dx] is

determined, one result may be anticipated. The eigenvalue matrix [X2] results from

the product

[dx]t [dx] = [Tx]t [Dx]t [Txdl rTxd]t [Dx] [Tx] = [Tx]t [Dx]t [Dx] [Tx] = [?,2]

(A2.2)

where the equations (2.16) and (2.14) are used. Therefore, the relatio, between [dx]

and p,21 is anticipated.

(i) Boundary Conditions DD and NN

Fo- the boundary condition DD. the first-order difference matrix [DxDD] 15

given in Table 2.2. The coiresponding [dxDD] i

[dxDD1 = [TxNN]t [DD0i fTxDD] (A2.3)
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If we multiply [TNN]t by [DxDD], we find that the first row of the result vanishes

because all the elements of the first column vector in [TxNNI are the same. The

remaining part of the resulting matrix can be written as a product of [RDD] and

[TxDDj, where [XDD] is the diagonal matrix foirned by the positive square roots of

[ADD 21. Therefore,

]_ = [](A2.4)

Since [TxDD] is a symmetric matrix, [TxDDI = [TxDDlt. Consequently [dxDD ] is

given by

k D(A2.5)

Thus [dxDD ] is a quasidiagonal matrix.

Using the equation (2.5), it can be shown easily that

Ldx =- [dxDD] (A2.6)

for the boundary condition NN.

(ii) Boundary Condition DN and ND

For the boundary condition DN, the first-order difference matrix is given in

Table 2.2. In tiat case, the corresponding [dxDN] is given by

[dxDN] = [TxNDt [DxDNI [TxDNI (A2.7)
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Using the procedure described previously, we can find that

[dxDN ] = [DN] = [dxN] - (A2.8)

where the k-th diagonal element of rXDN], Xk, is given by the positive root of ?.k2 .



Appendix 3

Calculation of Modal fields in three-dimensional problems

(I) Time-Harmonic Case

In three-dimensional problems shown in Fig. 5.1, all the six field components

should be considered to satisfy the boundary conditions. Usually, two scal-

potentials, Te(x,y,z,t) and Th(x,y,z,t), are introduced to simplify the formulation

instead of considering all six field components. The fields can be derived from the

solution of two scalar potentials. The equations for the potentials are given by

a2 hTe /a.x 2 + a2 Te / y2 + a2 Te / z2 - a2 Te / at2 = 0 (A3. la)

D2 Th / ax 2 + a2 Th / ay2 + a2 Th /az 2 - a2 Th / at 2  0 (A3.1 b)

Using the separation of variables technique, 'P(x,y,z,t) = v(x,y,z) T(t), the

time-dependent solution is of the form

T(t) = A cos(cot) + B sin(cot). (A3.2)

The space-dependent equations are given by

a2 We / x2 + a2 ye /@y2 + a2 ye / az 2 + o)2 .E(y) yqe = 0 (A3.3a)

a2 Wth / ax2 + @2 W h / y2 + a2,4h / az2 ., (2 E(y) yh = 0 (A3.3b)

with the boundary conditions,

80
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We(x,y,z) = 0, at y = 0, b (A3.4a)

0 -Vh(x,y,z) / ay = 0, at y = 0, b (A3.4b)

At y = h,

2Ee h 2 eh

Exj- Exij=i J° -o- azy ~ ox 0
jCiE 1E(jX~ Oa a' ayX j(. x a' (A3.4c)

I a 2 2 e 2 2 eE -Efzl + Er6 1E ,- _+ 0 ~) vn oo- 1
jOEE1E0 Jz 'o az2

(A3.4d)

2 h e 2 h e

H x - H x l = W" W a -" - J z

igolt ax ' ay jo) Lo° ax az ay (A3.,e)

1 a2 2 h 1 02 2 hHzI- Hzrl 2 + 0) t oEE OF I  2 +o ~o o  i = J

(A3.4f)

where s.ubscripts I, II represent the regions shown in Fig. 5.1.

The first step of analysis is the discretization of the equation according to the

nle explained in Chapter 2, which gives

+ [D"NDe1 [e] 2 +10

ay Ax Az (A3.5a)
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hlJ DVDN hj V DXJ + ~ 1 0
+~~~~ 0)+ I~x 0

ay 2-x2A 
(A3.5b)

with the boundary conditions IA.a

[l= 0, aty =' 0, b (A3.6a)

aIIi / ay =0, at y = 0, b(A6b

At y =h

jOE1 E0o Ax Az aY jOE 0  Ax Az A .c

IL 2 2e [0
-f + e wjx-v: 2

iCIEo Az 2  Az2 +A

(A3.6d)

[D thh N x z a W

_rj W I[Ax Az a0)yL
jWO A Az D jWO(A3.6e)

h 
e, + "

-+ +rc -1F -(O A2 h}

jo) 1 Az 2(A3.6f)

since the matrices [DxxND), [DxxDNI, tDzzND], and [DzzDN] are real

symmetric matrices, they can be diagonalized by appropriate transformation matrices
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(see Table 2.3). The potentials can also be transformed into the "transformed

potentials",

[U] = [TxNDjt [41e] [TzND] (A3.7a)

[V] = [TxDNIt [Wh] [TzDN] (A3.7b)

Then, equations (A3.6a,b) are transformed into

U d I[U]+ Ud + O (y)[U] [0]
y2 2 2 + .E([U[0

Ax AZ (A3.8a)

+t D C 2[

Ax Az (A3.8b)

with the transformed boundary conditions,

[U] = 0, at y = 0, b (A3.9a)

a[V] / Dy = 0, at y = 0, b (A3.9b)

At y =h,

[d_ (dr] [U 1Ed t [N]U 1 D~j+ -O

jColEE o  Ax Az yjCo0  Ax Az (A3.9c)

2 Q E 2+C 2 Iq 110

jC)-,Fo Az 2  J~o Az2

(A3.9d)
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1 [d1]C v][d] 1 [ V [j]

j- O Ax xAz oy jo1 °  Ax Az (A3.9e)

1 [11[d~2  0 2 2OEE +(j) OE V II[JX]

jo o  Az2  'jo Az2

(A3.9f)

Now equations (A3.8a,b) are uncoupled so that the general solution of the ik-

th line which satisfies the boundary condition (A3.8a,b) can be obtained

U Lik = AIik sinh Ilik Y (A3.1Oa)

U II,ik = AII,ik sinh KIIik ( b - y (A3.10b)

VIik = Biik cosh TlI.ik Y (A3.1Oc)

VIik= B II,ikcosh 1 I,ik( b - y (A3.10d)

where

iik= - [dxx,i ND / Ax 2 +dzz,kN D / Az2 + 02 .Ure] (A3. 1 a)

Kiiik - [dxx,i N D / Ax 2 +dzzJk N D / Az 2 + w2 .0] (A3. 11 b)

7i,ik= - [dxx,iDN / Ax2 +dzzkDN / Az2 + C02  ErC4)j (A3.1 c)
IIlljk 2 = - [dxx,iDN / Ax2 +dzz,kDN / Az2 + .02gt] (A3.1 Id)

By means of these solutions, the derivatives of U and V with respect to y at y

= h can be represented by the values of U and V at y = h.

dUI,ik _ KI,ik

dy tanh likh
,ik h at y = h (A3.12a)

dUIjk = KIlik

dy tanhKII.ikd , at y = h (A3.12a)
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dy =1Iik~~ 1I~ikh Vikat y = h (A3.12a)
dV11ik = _ .d VIl~k

dy TI1, iktn 71, ik , at y = h -(A3.12a)

Now the equations (A3.9c-f) have six unknowns UI,ik, U11lik, VIjik, V11 ik,

Jxjk and Jzik at y = h. Therefore, the continuity equations in (A3.9c-f) can be used

to solve for the potentials, U1,j, UIA~l, VIJIk and V11,j1 at y =h in terms of the current

densities, Jxjik and Jzjik.

UI][c 2 2 b - C1 2 b2  C12

FIVI ik CIlC2 2 -CI 2 C2 1 c1 1 b2 -c 21 bj l JJXj (A3.13a)

where

dZk2

1ii d xjdzk Az

jw'OAx Az d D 2

2 O
Az (A3.13b)

2 +c
Az

C 1 2 = - 1 hI k ktah TI Likh T IIA ktanh 'I1 IIk d Dd zz,k 2 ) I~
2

Az I (A3.13c)
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dTz, + 2 EI

C2 1 = I~ik Coh )Cl,ik h + ICJI,ik Coth XI11 i kd NDz

2+

Az (A3.13d)

d EN d N z2+0 OFE0

C2 2 = 1-z~
3C*i 0 Ax Az dm + C 2 F+2

Az (A3.13e)

dE

. + W IE

Az (A 3.13 f)

d *Nd D
b2 - X.i z,k 1N

Ax Az d 2'zz,k+0 
,F

Az (A3.13g)

T'hen, the field values at y =h can be found by using the following relations evaluated

at y = h.

ND ND
EX ~ dxy = U~(y - Thtanh TIlik h Vi (y)JxkY)=ime(y) Ax Az U Y lk(A3. 14a)

dND d N
Ek~dv) = 1 ~ a dy - V kYjCO(y) Az TY" Ax (A3.14b)

Ezik(Y) = ( + W' PE~y) ) U i y)

jox~y Az 2(A3. 14c)
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DN DN

H.Ky ) = ik Ui(y ) + X'i , Viy)
tanh Kikh jot 0 Ax Az (A3.14d)

dN~. i? 1 dryZka
Hy--' d )y.,y = UikY) + 1-~ Vik~y)

AX jo~ioAz Y(A3.14e)

2

HZiky) = I d + (D PE() )k

J°WO" 0 Az 2 Yf(A3.14f)

From this point on, we change the two-dimensional arrays for fields and

currents into one-dimensional arrays for convinience of formulation according to the

rule

n=i+(k- 1)Nx, l<i<Nx, l<k<Nz (A3.15)

Then, the two-dimensional Nx by Nz matrices become NxNz column matrices and

equations (A3.14ab) can be expressed in the following form:

III ] (A3.16)

where [Z]'s are diagonal matrices.

Before the final boundary condition is applied, a useful matrix operation, the

Kronecker product, is introduced

a,{B anrB]]

[A] ® [B]J
amjB] a ' B]J (A 3.17)
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Two important properties of the Kronecker product are

( [A] (9 [g131 [C] 9 [D] ) = ( [A] [C] ) 9 ( [B] [D])- (A3.18a)

([A] ® [B] )t =.[Ait ® [Bit (A3.18b)

Now, the final boundary condition is that the tangential electric fields should

be 7ero on the metalization part of the substrate surface. In order to apply this

condition, we have to go back to the original domain using the inverse transformation

relation

E T[z ]---> [Ez]= ([T ] 9 [Tx' )[E] (A3.19a)[Ez[! N - [TN
{EJ 2D = ['1[X]2D[,TI--->[E,,] (9 [Tr] ) [Ex]I (A3.19b)

[L Z 2D ]J 2D[T>JVLtXI[Z (A3.19c)

[J] 2 D = [TN] [i1]2D[T ]f---> [J,,] ([T ] 09 [T] )[J3 (A3.i9d)

where the subscript 2D means the two-dimensional matrix considered up to equation

(A3.14). The equation (3.15) can be irverse transformed into

E Z ] 1 
=[

z z [ z l  J z l 0
[x],r =I [[Z][Jlred[ x j (A3.20)

where 'red' represents the reduced matrix made by deleting the rows and columns

corresponding to the non-metalization lines from the full matrix. Equation (A3.20)

will have nontrivial solutions at the resonant frequencies of the structure only. The

resonant frequencies are founci from the determinant equation
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det [E1ZZx] [0]
(A3.21)

A: resonance, the modal current distribution can be found as an eigenvector in

(A3.20) by using the QR algorithm for the stability of the solution.

One inportant thing to be mentioned in the calculation of the roots is the

elimination of poles present in the matrix element in order to obtain the correct roots.

One way to remove the poles in the determinant calculation is by the pole

multiplication method, in which all the elements are multiplied by the common

dii-ominator. In this case, the pole extraction is performed in equation (A3.16), not in

equation (A3.21). This is because the poles in equation (A3.16) can be easily found.

The process is as follows:

N1

N_ D

N 1  NH Di  NNDN]

(A3.22a)

where
N

D= I- Di
i=1.i*i (A3.22b)

After the values of the potentials, Ulik, U1llik, VIik, VItik at y = h are known

from the modal current density distribution obtained in the previous step. the

coefficients AI,ik, Bijjk, Ail ik and BRik in equations (A3.Oa-d) can be determineo.

Therefore, the transformed modal fields of the given structure can b? obtained by

equations (A3.14a-f).
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(II) Static Case

In this case, the governing equation is the Laplace's equation with proper

boundazy conditions:

2
V V=O (A3.2-i)

and at v = h,

V I Vfl

,- - + - -- G(A3.24a)

0VI OVll
Ezi - EH = v - a +-uf 0 (A3.24b)

E r ry pI - r ,Vy=( A 3 .2 4 c )

where the subscripts I and II represent the regions shown in Fig. 5. 1.

Using the discretization rule described in Chapter 2, equations (A3.23) and

(A3.24a-c) can be discretized as follows :

2 [V,+ -k4D][V]+ I [V][DI' j 0

A x Az (A3.25)

at y = h

Ax L]v Ax 0 (A3.26a)

1 1V][DE ] - [VIJ][D' ] =0

Az z Az (A3.26b)
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Era[VjI+ via][P]
(A3.26c)

where [] represents a matrix whose ij-th element represents the potential at the ij-th

line.

Since the second-order difference matries [DXXND ] and [DzzDN] are real

symmetirc matrices, they can be diagonalized by using the transformation matries (see

Table 2.3)

[TxND]t [DxxND] [TxND] = diag [dxxND] (A3.27a)

[TzDNjt [DzzDN] FT zDNJ = diag [dzzDN] (A3.27b)

The potential [Iv is also transformed into a transformed potential [U],

[U] = [TxND]t [V] [TzDN] (A3.28)

Then, equations (A3.23) and (A3.24a--c) become

ay2 [u]+ [dN][U]+ - [U][d DN= 0

Ax 2Az (A3.29)

aty =h

- Ifd][u II+ -[d][uH1=O
Ax Ax (A3.30a)

[ u[ ] 1d [U [d 0
Az Az (A3.30b)

ay a[ I (A3.30c)
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The solution of equation (A3.29) which satisfies the top and bottom boundary

condition can be written as

sinh KikYU I,ik = Alik

K ik ,in region I (A3.31a)

sinh cik( b - y )

Kik ,in region II (A3.31b)

where
2 ND dNK dxx, i  zz~k

iCik -= .1dZ
2 2

Ax Az (A3.3 1c)

By means of these solutions, the derivative of the potentials with respect to y

at y = h can be represented in terms of the potential at y = h.

U yhik Kik coth i ikh UI,ik(y=h)

Sy=h (A3.32a)

UI~ik -K ik coth Kikd Uii,ik(y=h)
Tyy--h (A3.32b)

Now, the boundary conditions, (A3.30a-c), can be solved for [U1 ik] and

[UI 1,ik] at y = h in terms of the charge density [p].

Ulik(y=h) = U jjjik(y=h) = Pik
r iktikh + Kikcothikd (A3.33)

Then, the field values at y = h can be found by using the following relations evaluated

at y = h.
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d NP

EXik(Y) =- dX"i U ik(y)
Ax (A3.34a)

Ez'ik(Y) =- z Ui(y)
Az (A3.34b)

From this point on, the two-dimensional field arrays are changed into the

corresponding one-dimensional vectors for convenience of formulation according to

the rule described in equation (A3.15). Then, the two-dimensional Nx by N z matrix

becomes an Nx*Nz column vector and the relations (A3.34a and b) can be expressed

in the matrix form:

[f:]= [EXP::flw
where the [GxP] and [Gzp] are diagonal matrices.

The final boundary condition is that the tangential electric field should be zero

on the metal strip. In order to apply this condition, we have to go back to the original

domain using the inverse transformation relation

[E] e ( [T e " 0Tnc [protX] (A3.6a)

[Ez] = ( [Tz' 3 (9 [T'3 )[Ez] (a3b

[1] II Tx])[ (A3.36c)

where ®is the Kronecker product defined by (A3.17).
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Then,

[E ][[G xpll [P] -[01
[EzJ]d reGi4,1d (A3.37)

where the subscript 'red' denotes the reduced matrix obtained by deleting the rows

and columns corresponding to the non-metallic discretization points. The static

charge distribution can be calculated from zqziation (A3.37) by using the QR

algorithm. After the values of the potentials, UI,ik and UII,ik at y = h, are found

from the static charge distribution, the coefficients Ai,ik and AII,ik in (A3.3 la and b)

can be obtained by evaluating the potential values at y = h, from which the electric

field distributions can be calculated by equations (A3.34a and b).
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